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The effect of the quantum nature of matter on the maximum information- 
processing potentialities is considered. It is shown that the degeneracy of the 
energy levels of a physical information-processing system results in the fact that 
a universal limit of information-processing rates does not exist, though for any 
specific system this rate is indeed bounded. A physical interpretation is then 
proposed for an elementary act of information-processing and the concept of 
information-processing depth is introduced. The example of a system of quantum 
oscillators is used to show that the ma:dmal information-processing depth is 
bounded, only a very. small fraction of the possible system states being used. The 
effect of thermal noise on information processing is briefly discussed. 

1. INTRODUCTION 

An important question in cybernetics (we use this word in the strict 
sense of Norbert Wiener) is whether there exist certain limiting relation- 
ships, following from the fundamental physical nature of information- 
processing processes, which in principle limit the potentialities of any 
natural or artificial cybernetical system. A quantitative consideration of this 
question should proceed from the fact that any processing on information, 
whatever its logical or semantic aspects are (logical or arithmetical, compu- 
tation, analog simulation, random search, etc.), is in its physical essence 
nothing other than a transfer of information from one physical system to 
another in the process of their interaction. Thus, information processing 
may be described as transmission of information over communication 
channels inside a cybernetical system, using the Shannon measure of 
information. 

There is a profound relationship between the concepts of information 
theory and statistical physics (Brillouin, 1960; Lebedev and Levitin, 1966). 
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The "entropy defect principle" (Lebedev and Levitin, 1966) makes it 
possible to interpret the Shannon information as a measure of the deviation 
of the system from a state of thermodynamic equilibrium and to express it 
in terms of the physical entropy of the systems constituting the communica- 
tion channel. Thus, no information can exist by itself: it is "attached" to a 
certain ensemble of states of some physical system. Speaking somewhat 
loosely, one might say that thought (understood in this context as an 
information-processing process) is not only not a nonmaterial, "imponder- 
able" entity, as supposed by some philosophers of the past, but may even be 
described quantitatively (though not semantically) in physical terms. 

A consequence of this is that the amount of information which can be 
processed by any real system restricted in time, space, and energy cannot be 
arbitrarily large. However, this does not yet imply that there are universal 
limits, expressible in terms of world constants and valid for all concrete 
systems irrespective of their macroparameters and microscopic structure. 

Bremermann (1962, 1967a, 1967b) concluded that there exists such a 
universal limit of the information rate per unit of mass, owing to the 
quantum nature of matter, equal to 

c2/h = 1.35 • 10 47 bi t /g  sec 

where c is the velocity of fight and h is Planck's constant. More precisely, 
Bremermann asserts that the information-processing rate in any system 
cannot exceed E/h (bits/sec), where E is the total energy of the system, or, 
according to the equivalence of energy and mass, mc2/h (bits/sec), where m 
is the mass of the system. 

In other words, there is an upper bound for the ratio of the amount of 
processed information to the product of the energy used in its processing 
and the processing time: 

I 1 
- - < ~ - b i t / e r g  sec (1) Et h 

Inequality (1) is indeed very remarkable and it has been widely accepted. 
However, it is valid only under certain conditions. As will be shown below, 
the arguments utilized to derive (1) implicitly ignore some essential factors: 
the degeneracy of energy levels of the physical systems that transmit the 
information, the possibility of repeated use of energy, and parallel transmis- 
sion of information. These factors imply that the quantity I/Et has no 
upper limit common to all physical systems; in the absence of noise, it may 
assume arbitrarily large values, though for any specific system it is of course 
bounded. 
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2. EFFECT OF DEGENERACY OF ENERGY STATES 

Let us assume that the state of an information-processing system varies 
in time in a completely deterministic manner. In the language of physics, 
this means that the initial state and Hamiltonian of the system are known 
exactly, and that there are no interactions of a statistical nature (such as 
interaction with a thermostat). In that case there is no loss of information 
due to random thermal motion and the information-processing potentialities 
of the system are limited only by the quantum properties of matter and 
field. 

What are the premises under which inequality (l) is valid? To see what 
these are~ we present (with some specifications) the derivation of (1) first 
given by Bremermann (1962). 

Let the total energy of the system be E and the transmission time of the 
signal t. If the energy state of the signal is nondegenerate (i.e., there is only 
one quantum state with given energy) then the number of distinguishable 
signals (i.e., almost-orthogonal quantum states) of length t is E t / h  + 1 =  
E/AxE + 1, where AxE = h / t  is the quantum mechanical uncertainty of the 
signal energy. Hence the amount of information transmissible in unit time is 
(in natural units) 

It - l l n ( t  ~ E  + l )  Eh AEE l n ( ~ E + l ) < ~ h l n 2  nat/sec (2) 

(since E / A  E ~> 1, we have E / A  E + 1 = x >~ 2, and 

In +1 = ~ l n x < ~ l n 2 )  

This is precisely Bremermann's limit. 
The situation changes in an essential way if the energy levels are 

degenerate, i,e., there exist several orthogonal states with the same energy. 
Such states are uniquely distinguishable, not by their energies but by 
measurement of other variables ("quantum numbers"). Let the degeneracy 
of all the states except the ground one be K. Then the transmission rate is 

I E A E . l n ( K ~ E + I )  
e 

Take AE = E (this means that we are using only two different values of 
signal energy). Then 

I E 
t = X ln(K + 1) nat/sec (3) 
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small: 

Ec 2 
<< 1 ( 7 )  

f2Sthv3 Av 

and if the following three criteria hold, the system should be "narrow 
band":  

a = v/Av >> 1 (8) 

"'three dimensional": 

~ S u  2 
f l -  >>1 (9) 

c 2 

and "quasiclassical ' :  

7 = tAl,>>l (10) 

It is easy to see that the above criteria (7)-(10) may be observed while 
allowing I / E t  to assume arbitrarily large values (e.g., by choosing fl 
arbitrarily large for fixed c~, ~,, E, and t). Note that in the case considered 
the energy E was used once during the time t. 

The calculation for an ideal corpuscular channel (Levitin, 1981b), using 
particles with a rest mass m instead of photons, gives a similar result: 

I 1 2e~Smte 2 be 
- in  ( 1 1 )  

Et at h3E 

where e is the average energy of one particle and Ae the interval of particle 
energies used. The conditions parallel to criteria (7)-(I0)  are 

h3E 
~ -  <<1,  a=e/Ae>>l  

2f~Smte 2 Ae 

2f~Sme t Ae 
/ 3 -  - - > > 1 ,  7 =  >>1 (12) 

h 3 h 

It is obvious that in this case too I / E t  may be arbitrarily large. 

3. M A X I M U M  D E P T H  OF I N F O R M A T I O N  P R O C E S S I N G  

We now consider another aspect in which the quantum structure of 
matter  may limit information-processing potentialities. It is well known in 
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cybernetics that a finite automaton is capable of processing information 
only to a finite depth (for example, it can deduce only finitely many 
theorems from a given axiomatic system), since the number of different 
states of a finite automaton is finite. However, the questions of whether 
there exist limits to "microminiaturization" and what are the potentialities 
of an "ideal" finite automaton belong to the realm of physics. 

From the standpoint of classical physics, the number of different states 
in any finite phase volume is infinite. According to quantum mechanics, the 
number of different orthogonal states ("cells") in a phase volume F is (in the 
quasiclassical approximation, i.e., for large phase volumes): 

F 
N -  - -  (13) 

where n is the number of degrees of freedom of the system. It seems 
reasonable to define an elementary act of "information processing" to be a 
transition of the system to a state orthogonal to the preceding state, since 
only orthogonal states can be unambiguously distinguished by measure- 
ment. Thus, the information-processing depth, i.e., the number of different 
ways in which a system can transform the initial information (specified by 
the choice of the initial state or, in other words, the number of different 
possible forms in which the initial information can be represented in the 
system, is equal to the number of different orthogonal states through which 
the system passes from the given initial state in the course of a Poincar6 
cycle (i.e., until it returns to a state close to the initial one). The important 
point is that systems with a large number of degrees of freedom may have 
many single-valued integrals of motion. Therefore, if we consider informa- 
tion processing in a closed system, every phase trajectory will contain only a 
small part of the set of all orthogonal states localized near a given energy 
surface. Consequently, the information-processing depth is not equal to the 
number N of different states given by equation (9), but is much smaller. 

Note that states which are orthogonal at a certain time remain orthogo- 
nal throughout further evolution of the system. Consequently, if the infor- 
mation is specified by the choice of some state from a set of orthogonal 
states, then, in principle, no indeterminacy will arise in the course of its 
further processing. However, generally speaking, the combination of mea- 
surements (complete set of variables) permitting unambiguous discrimina- 
tion of these states depends on the instant of time and on the evolution law 
of the system, which in turn is determined by its Hamiltonian. In other 
words, to carry out the necessary measurement at any instant of time one 
must calculate the time dependence of the complete set of variables whose 
eigenstates are just our orthogonal states. But this means that one must 
perform a calculation equivalent to the very processing of information being 
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done by the system! The paradox is resolved if the motion of the system is 
sufficiently near to being classical, viz., at definite intervals of time the 
system comes into states that belong to the initial set of orthogonal states 
(i.e., to the initial partition of the phase space into cells). In the general case, 
this condition is satisfied for sufficiently small time intervals, during which 
the "dispersion of the wave packet" may be ignored (nevertheless, the 
number of different orthogonal states gone through within this time may be 
very large). However, there are cases in which motion of this type may go on 
for an unlimited time. An example of such a situation will now be analyzed. 

Consider a system which can be brought by a canonical transformation 
of variables to the form of a system of noninteracting oscillators of the same 
frequency w. It is convenient to take the dimension of the phase variables 
equal to the square root of the energy. The Hamiltonian of the system is 
then 

i ~ l  

where/~, and ~ are operators of, respectively, momentum and coordinate of 
the ith oscillator, and n is the number of oscillators. To each quantum state 
of the oscillator system there corresponds a cell of volume (2vh~o)" in 
2n-dimensional phase state. The energy surface corresponding to energy E 
is a 2n-dimensional sphere of radius (2E)  ~/2. 

We now assume that all the oscillators are in states of an "oscillating 
wave packet," corresponding most closely to the classical motion of an 
oscillator with definite amplitude and phase (Schr6dinger, 1926). [Nowa- 
days, they are usually called "coherent"  states (Senitzky, t962: Glauber, 
1963).] In such states the shape of the wave packet, the average energy, and 
phase of the oscillators are preserved. These states are not exactly orthogo- 
nal; in the quasiclassical case, however, if the average energy of each 
oscillator and the number of oscillators are sufficiently large (E/nh~o >> 1, 
n >> 1), one can choose a set of coherent states such that the states are 
asymptotically orthogonal. These states are concentrated in 2n-dimensional 
spherical cells of radius r = (nhw) ~/2, centered at points lying on the sphere 
of energy E. The number of such orthogonal states when n>>l and 
E/nhco >> 1 is asymptotically equal to 

N~( 2E )" 
nh,~ (15) 

and the information associated with the choice of one of the states is 

In 2E I=lnN~n ~ (16) 
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In this situation, the cells may be placed in such a way that the centers of 
closest neighbors are spaced apart by a distance rf2 =(2nh~o) I/2. (Thus 
neighboring cells intersect, despite the orthogonality of the corresponding 
states.) The phase trajectory of the center of one of these cells is a circle of 
radius (2 E )l / 2 

Thus, the number of different orthogonal cells "threaded" on the phase 
trajectory of the center of one cell is 

D_2~r(2E)~/2 ( E ) ~/2 
r f2  =2~r nh~ (17) 

This is the very number of different orthogonal states through which the 
system passes during a Poincar6 cycle (which is clearly equal to the 
oscillator period �9 = 2~/r 

Thus, the number of states D through which the system passes from 
some given initial state is very small compared with the total number N of 
asymptotically orthogonal states with the given average energy: 

D,~Irf2 N '/2~ (lS) 

Metaphorically speaking, a system of this type is capable, starting from 
different "premises," of developing a great number of different "theories," 
though each of these will be relatively short. 

Note that the rate of information processing per unit energy is in this 
case bounded from above by a quantity which exceeds Bremermann's limit 
by a factor approximately 9.4. Indeed, the average length of one processing 
act is 

T 
A t = - -  

D 

Hence, in view of (I6) and (17), we have 

i  ,0s 
- . 5 1 n 3 -  (19) EAt h ~ In n---~w <~ - h  h 

[according to equation (2), Bremermann's limit is l n2 /h  = 0.693/h]. The 
existence of a limit is due to the fact that all oscillators take part simulta- 
neously and "synchronously" in processing the information while their 
energy states are nondegenerate (i.e., the number of degrees of freedom of 
each oscillator is unity). 
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The nature of these results is not qualitatively altered if the oscillators 
have different frequencies. The average of each oscillator is an integral of 
motion, and there are a great number of phase trajectories corresponding to 
different distributions of energy among the oscillators such that states 
belonging to different trajectories are orthogonal (at least, asymptotically). 
Thus, the number of different disjoint subsets of states is not less than the 
number of corresponding choices of energy values for the oscillators, the 
total E being given. The situation is exactly the same in any physical system 
possessing integrals of motion which are single-valued functions of the state 
of the system (Landau and Lifshitz, 1958). 

4. EFFECT OF THERMAL NOISE 

The most serious limitation on the possibilities of information process- 
ing is the statistical nature of physical processes. In reality we are usually in 
a position to control only a few, predominately macroscopic degrees of 
freedom of the system. The remaining degrees of freedom, of which there 
are a tremendous number, interact chaotically with these "useful" degrees of 
freedom, causing dissipation of signal energy and appearance of thermal 
noise. Unfortunately, there are at present few general results concerning the 
theoretical limitations imposed on information processing by relaxation 
processes. Brillouin (1960) showed through a number of examples that the 
minimal energy per natural unit of information is kT(where  k is Boltzmann's 
constant and T the absolute temperature of the system). However, this 
assertion has actually been proved rigorously only for ideal physical chan- 
nels with additive statistically independent noise (Levitin, 1982). It is shown 
in that paper that the minimal amount of energy necessary to transmit a 
unit of information over a channel of this type is 

E0 
Emin- I . . . .  >- kT I  (20) 

where E 0 is the signal energy. I .... the maximal amount of information, and 
T, the noise temperature. Equality holds asymptotically when the signal is 
weak. i.e., when 

E~ << 1 
E, 

where E, is the noise energy. In particular, for the one-dimensional photon 
channel (Lebedev and Levitin. 1966). 

Emm = k T  I + 3 h R  
"rl" 
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where R is the information transmission rate. It is to be expected that (20) 
will also be valid under considerably more general conditions. 

Intuitively, it is clear that the information-processing potentialities of a 
closed physical system depend on the nonequilibrium of the system. Subsys- 
tems which are in complete thermodynamic equilibrium with each other are 
clearly incapable of exchanging information. For instance, a television 
camera placed in a cavity filled with black-body radiation can "'see" 
something therein only if there is a temperature difference between cavity 
and camera. On the other hand, one should expect that more intensive 
information processing will increase energy dissipation and speed up relaxa- 
tion of the system. 
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